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Stackelberg Game-based Robust Optimal Control of
Cyber-Physical System Under Hybrid Attacks

Junkai Tan, Shuangsi Xue, and Hui Cao

Abstract—This paper presents a novel framework integrating
Stackelberg game theory and reinforcement learning for cyber-
physical system (CPS) security. We develop a hierarchical game
model where defenders and attackers interact through sequential
decision-making. The defender-attacker dynamics are formulated
as an optimization problem combining H2 and H∞ control
objectives. Key innovations include: 1) A unified game-theoretic
approach for modeling hybrid attack-defense mechanisms, 2)
Online reinforcement learning algorithms for real-time strategy
adaptation, and 3) Rigorous stability analysis using Lyapunov
theory. Theoretical guarantees of convergence are established
for the proposed learning scheme. Comprehensive experiments
on a robotic platform validate the framework’s effectiveness in
maintaining control performance under diverse attack scenarios.

Index Terms—Cyber-physical system, Stackelberg game,
optimal control, reinforcement learning, adaptive dynamic
programming.

I. INTRODUCTION

CYBER-PHYSICAL systems (CPS) integrate physical
processes with computational elements, playing a crucial

role in modern society. While widely used in critical
infrastructures like power grids [1, 2], transportation networks
[3, 4], and industrial control systems [5, 6], their increasing
connectivity and complexity introduce security vulnerabilities.
Various cyber attacks such as denial-of-service (DoS) [7,
8], false data injection (FDI) [9, 10], and malware [11]
can severely impact system operations. Therefore, developing
effective defense strategies against these threats is essential.

Game theory offers an effective approach for analyzing
strategic interactions between adversarial agents in CPS [12,
13]. The Stackelberg game framework, where defenders act
first as leaders followed by attackers’ responses, enables
systematic modeling of hierarchical security decisions [14,
15]. This sequential structure allows defenders to proactively
plan countermeasures by anticipating potential attack strategies
[16]. Recent work has explored various aspects of game-
theoretic CPS security. In [17, 18], robust Stackelberg
games were formulated to analyze Nash equilibria under
hierarchical decision-making. A Hamiltonian-driven approach
was proposed in [19] for deriving optimal stabilization
controllers. Research in [20, 21] developed single-critic
learning algorithms combining H2 and H∞ control for
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uncertain nonlinear stochastic systems. Data-driven methods
were investigated in [22, 23] to achieve optimal mixed
H2/H∞ performance. For discrete-time linear systems, [24]
proposed a robust Stackelberg game incorporating both
control indices. However, existing mixed H2/H∞ approaches
have focused primarily on stabilization without specific
performance constraints. The challenging problem of tracking
control for nonlinear constrained systems remains largely
unexplored in this context.

Reinforcement learning (RL) provides a powerful
framework for solving complex decision-making problems
in CPS [25, 26]. Through continuous interaction with the
environment, RL enables agents to learn and adapt optimal
control policies, making it particularly suitable for dynamic
attack-defense scenarios in CPS security. Both model-free
and model-based RL approaches have been investigated
for CPS control. Model-free methods like Q-learning [27,
28] can learn stabilizing controllers without prior system
knowledge, while integral RL [29, 30] approximates optimal
control for partially unknown systems. However, these offline
approaches typically require extensive training data. In
contrast, model-based RL methods [31, 32] leverage system
models for online learning, though they need prior dynamic
information. Actor-critic architectures [33, 34] have been
explored to simultaneously learn value functions and control
policies online. Recent works [35, 36] have extended this to
constrained nonlinear tracking control. While existing studies
demonstrate RL’s potential for CPS control [37, 38], few
have addressed the critical challenge of hybrid attack-defense
mechanisms. This gap motivates our investigation of a
game-theoretic RL framework for securing CPS under diverse
attack scenarios.

Motivated by these challenges, this paper proposes a novel
Stackelberg game framework to analyze hybrid attack-defense
interactions in CPS. Unlike existing approaches that focus on
single attack types or static defense strategies, we develop a
comprehensive model capturing dynamic interactions between
multiple attack modes and adaptive defense mechanisms. The
problem is formulated as an optimal control scenario where
attackers maximize system damage using H2 performance
metrics while defenders minimize impacts through H∞
control. An online reinforcement learning approach enables
real-time strategy adaptation, overcoming limitations of offline
methods that require extensive prior training data. Theoretical
stability guarantees are established via Lyapunov analysis.
Extensive simulations on a four-wheeled robot platform
validate the framework’s effectiveness. The key contributions
are:



THE INTERNATIONAL JOURNAL OF INTELLIGENT CONTROL AND SYSTEMS, VOL. X, NO. X, MONTH YEAR 2

1) A unified Stackelberg game framework that advances
existing work [5, 14, 39] in three aspects: (1) Integration
of both H2 and H∞ performance indices to characterize
attack-defense objectives (2) Explicit modeling of
stochastic hybrid attacks through Bernoulli switching
signals (3) Consideration of input constraints and system
uncertainties in the game formulation

2) An efficient actor-critic architecture that improves
upon traditional methods [7, 12] through: (1) Online
concurrent learning of value functions and control
policies (2) Lower computational complexity without
requiring complete system models (3) Provable
convergence guarantees under persistent disturbances

3) Comprehensive experimental validation demonstrating
clear advantages over baseline approaches [40, 41]: (1)
Reduction in tracking errors under hybrid attacks (2)
Faster convergence to optimal strategies (3) Enhanced
robustness against simultaneous DoS and FDI attacks

This paper is structured as follows: In Section II, we
present the mathematical preliminaries and system modeling.
Section III develops the Stackelberg game framework for
hybrid attack-defense mechanisms. Section IV provides the
theoretical analysis and proposes an online reinforcement
learning solution. Section VI validates the framework
through comprehensive numerical experiments. Section VII
summarizes our findings and discusses future research
directions.

II. PRELIMINARIES

Consider a continuous-time nonlinear CPS with
disturbances:

ẋ(t) = f(x(t)) + κ(g(x)u(t), k(x)ω(t)) (1)

where x(t) ∈ Rn denotes the system state vector, u(t) ∈ Rm

represents the control input, ω(t) ∈ Rm indicates external
disturbances, f : Rn → Rn characterizes autonomous
dynamics, g : Rn → Rn×m defines control distribution,
k : Rn → Rn×m captures disturbance coupling, and κ :
Rn×m × Rn×m → Rn models the hybrid attack-defense
mechanism:

κ(g(x)u(t), k(x)ω(t)) = a(t)g(x)u(t) + b(t)k(x)ω(t) (2)

The switching signals a(t) and b(t) follow Bernoulli
distributions with success probabilities α and β respectively,
representing the stochastic nature of attack occurrences and
defense activations. For reference trajectory tracking, let
xd(t) ∈ Rn be the desired state governed by: ẋd(t) =
fd(xd(t)), where fd : Rn → Rn specifies the reference
dynamics. Define tracking error as e(t) = x(t) − xd(t). The
error dynamics are:

ė(t) = f(x)− fd(xd) + κ(g(x)u(t), k(x)ω(t)) (3)

where all functions satisfy local Lipschitz continuity
conditions. For analytical purposes, we integrate the system
(1) and reference dynamics into an augmented form:{

Ẋ =F (X) + aG(X)U + bK(X)ω

Y =H(X,U)
(4)

where the augmented state X = [x⊤, x⊤
d ]

⊤ ∈ R2×n combines
actual and desired states, control input U = [u⊤, 01×m]⊤ ∈
R2×m incorporates system and reference controls, and Y
denotes the performance output. The system matrices are given
by:

F =

[
f(x(t))
fd(xd(t))

]
, K =

[
k(x(t))
0n×m

]
,

G =

[
g(x(t)) 0n×n

0n×m 0n×m

]
, H =

[ √
QX(t)√
αRU(t)

]
where Q and R are positive definite weighting matrices for
state and control costs. We make the following assumptions:

Assumption 1. For system (4), we assume:
1) Functions F and G are locally Lipschitz on X ∈ χ ⊂

Rn, with F (0) = 0 and ∥G∥ ≤ GH for all X ∈ χ.
2) Matrices Q and R satisfy λQI ⪯ Q ⪯ λ̄QI and λRI ⪯

R ⪯ λ̄RI, where 0 ≤ λQ, λR < λ̄Q, λ̄R < ∞.

These preliminaries enable us to formulate the Stackelberg
game framework for hybrid attack-defense interactions.

III. PROBLEM FORMULATION

This paper addresses optimal control design for CPS
under hybrid attack-defense scenarios. The attacker aims to
maximize system damage using H2 control input U∗(t),
while the defender minimizes damage through H∞ control
ω∗(t). Based on system (4), we model this interaction as a
Stackelberg game. For the nonlinear CPS (4), the H2 and H∞
performance objectives are defined as:

JD(X0, U, ω) = E

{∫ ∞

t

∥Y ∥2dτ
}

= E

{∫ ∞

t

(
X⊤QX + αU⊤RU

)
dτ

}
(5)

JA(X0, U, ω) = E

{∫ ∞

t

γ2∥ω∥2 − ∥Y ∥2dτ
}

= E

{∫ ∞

t

(
βγ2∥ω∥2−X⊤QX−αU⊤RU

)
dτ

}
(6)

where γ denotes the disturbance attenuation level. JD measures
H2 performance while JA quantifies H∞ performance.
The sequential interaction between attacker and defender
is formalized through the following Stackelberg game
framework:

Definition 1. (Stackelberg Game Framework) Consider a
defender D and attacker A with objectives (5) and (6). The
hierarchical decision process involves:
Level 1 (Defense): D determines baseline strategy UL1 ∈ ΩU :

JDL1
(X0, U

∗
L1, 0) = min

U∈ΩU

JD(X0, UL1, 0)

Level 2 (Attack): Given U∗
L1, A optimizes ωL2 ∈ ΩW :

JAL2
(X0, U

∗
L1, ω

∗
L2) = max

ω∈ΩW

JA(X0, U
∗
L1, ωL2)

Level 3 (Defense Update): D updates UL3 ∈ ΩU given ω∗
L2:

JDL3
(X0, U

∗
L3, ω

∗
L2) = min

U∈ΩU

JD(X0, UL3, ω
∗
L2)
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Fig. 1. Stackelberg game-based hybrid attack-defense interaction.

The resulting U∗ ≜ U∗
L3 and ω∗ ≜ ω∗

L2 form the
Stackelberg equilibrium.

As illustrated in Fig. 1, the defender first establishes an
initial control strategy. The attacker then optimizes their
disturbance input based on the defense policy. Finally, the
defender adapts their control to counter the attack. This
iterative process converges to the Stackelberg equilibrium
strategies U∗ and ω∗.

Problem 1. (Stackelberg Game Framework for Hybrid Attack-
Defense) Consider the nonlinear CPS (4) under hybrid attack-
defense mechanisms characterized by stochastic switching
signals a(t) and b(t) following Bernoulli distributions with
success probabilities P (a = 1) = α and P (b = 1) = β. The
objective is to:

1) Design optimal defense strategy U∗(t) that maximizes
system damage using H∞ performance index (5)

2) Develop optimal attack policy ω∗(t) that minimizes
adverse impacts through H2 control (6)

The interaction could be formulated as the following
optimization problem:

J∗
D(X0) = min

Ū∈ΩU

JD(X0, Ū , ω̄∗)

J∗
A(X0) = min

ω̄∈ΩW

JA(X0, Ū , ω̄)

where ΩU and ΩW denote the feasible control sets for the
defender and attacker. The optimal control signals are subject

to the following constraints:

Ū∗ =

{
U∗, a(t) = 1

0, otherwise

ω̄∗ =

{
ω∗, b(t) = 1

0, otherwise

(7)

where Ū∗ and ω̄∗ denote the actual implemented defense and
attack control signals under stochastic switching.

Based on the formulated Stackelberg game framework, we
first analyze the attacker’s optimization problem:

J∗
A =max

ω
E

{∫ ∞

t

(
βγ2∥ω∥2 −X⊤QX − αU⊤RU

)
dτ

}
(8)

The attacker’s Hamiltonian function is defined as:

HA (X,U, ω,∇J∗
A) =∇J∗

A
⊤ (F + αGU + βKω)

+ βγ2∥ω∥2 −X⊤QX − αU⊤RU
(9)

By minimizing HA, the optimal attack strategy is obtained as:

ω∗(U) = −K⊤

2γ2
∇J∗

A (10)

The evolution of the attacker’s value function is captured by
costate dynamics:

λ̇2 =−
(
∂F

∂x
+

∂G

∂x
U +

∂K

∂x
ω∗ +G

∂U⊤

∂x
X

)⊤

∇J∗
A

+ 2QX + 2RU
∂U

∂x
(11)

For the defender’s optimization:

J∗
D = min

U
E

{∫ ∞

t

(
X⊤QX + αU⊤RU + η⊤λ̇2

)
dτ

}
(12)

where η is the Lagrange multiplier. The defender’s
Hamiltonian is:

HD (X,U, ω∗,∇J∗
D, η) =∇J∗⊤

D (F + αGU + βKω)

+X⊤QX + αU⊤RU + η⊤λ̇2

(13)

The optimal defense strategy is derived as:

U∗(ω∗) = −1

2
R−1

(
G⊤∇J∗

D −∇xGη∇J∗
A
)

(14)

The Lagrange multiplier dynamics are governed by:

η̇ =

n∑
i=1

ηi

(
∂K

∂Xi
· ∂ω∗

∂∇J∗
A

)⊤

∇J∗
A

+ (∇F + α∇GU + β∇Kω∗ + αG∇U) η

−
(
K · ∂ω∗

∂∇J∗
A

)⊤

∇J∗
D (15)

Due to the complexity of solving these nonlinear Hamiltonian
optimization problems directly, we propose an actor-critic
reinforcement learning approach to efficiently approximate the
optimal value functions and control policies online.
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Fig. 2. Structure of the proposed Stackelberg game-based hybrid attack and defense.

IV. MAIN RESULTS

In this section, we develop an online reinforcement
learning solution using actor-critic architecture to solve the
formulated Stackelberg game problem. As shown in Fig.
2, the defender and attacker are modeled as hierarchical
learning agents that interact through neural networks (NNs).
The proposed framework employs dual actor-critic networks
for each agent: the actor networks approximate optimal control
policies while the critic networks evaluate performance by
estimating value functions. This concurrent learning scheme
enables efficient approximation of both optimal strategies and
their corresponding performance metrics through continuous
interaction between the adversarial agents.

A. Actor-Critic Architecture for Value Approximation

To derive optimal strategies, we employ parallel actor-critic
networks for both agents. The critic networks estimate value
functions while actor networks generate control policies. The
neural approximation structure is formulated as:

J∗
i (X) =W⊤

ciϕci(X) + ϵci(X), i = 1, 2 (16)

U∗(X) =− 1

2

(
R−1G⊤ (

∇ϕ⊤
a1Wa1 +∇ϵ⊤a1

)
−
(
W⊤

a2∇ϕa2 +∇ϵa2
)
∇xGη

)
(17)

ω∗(X) =− K⊤

2γ2

(
∇ϕ⊤

a2Wa2 +∇ϵ⊤a2
)

(18)

where Wci,Wai ∈ Rnϕ×1 denote the target weights for
critic and actor networks respectively, with ϵci, ϵai representing
approximation errors.

Since the ideal weights are unknown, we implement
estimated parameters:

Ĵi(X) =Ŵ⊤
ciϕci, i = 1, 2 (19)

Û(X) =− 1

2

(
R−1G⊤∇ϕ⊤

a1Ŵa1 − Ŵ⊤
a2∇ϕa2∇xGη

)
(20)

ω̂(X) =− K⊤

2γ2
∇ϕ⊤

a2Ŵa2 (21)

By incorporating these approximations into the Hamiltonian
functions, we derive the Bellman optimality errors:

δ1 =
(
∇ϕ⊤

c1Ŵc1

)⊤ (
F + αGÛ + βKω̂

)
+X⊤QX + αU⊤RU + η⊤λ̇2 (22)

δ2 =
(
∇ϕ⊤

c2Ŵc2

)⊤ (
F + αGÛ + βKω̂

)
+ βγ2∥ω̂∥2 −X⊤QX − αU⊤RU (23)

For analytical purposes, we make the following assumption
on network parameters:

Assumption 2. The network weights and activation functions
satisfy uniform bounds: ∥Ŵci∥ ≤ WHi, ∥σi(X)∥ ≤ σHi,
∥∇σi(X)∥ ≤ σD,Hi, ∥ϕi(X)∥ ≤ ϕHi, ∥∇ϕi(X)∥ ≤ ϕD,Hi,
∥ϵi(X)∥ ≤ ϵHi, ∥∇ϵi(X)∥ ≤ ϵD,Hi.

These neural approximation structures enable online
learning of optimal strategies through weight updates driven
by Bellman error minimization.

B. Online learning of value functions

We present an online learning scheme for actor-critic
neural network weights based on minimizing Bellman
errors. The defender maintains a historical data stack
[Û(t), δ1(t), [Û

j(t), δj1(t)]
N
j=1], while the attacker stores

trajectory data [ω̂(t), δ2(t), [ω̂
j(t), δj2(t)]

N
j=1], where the

superscript j indicates historical samples. Both agents update
their neural network weights by minimizing the squared
Bellman errors: Ei = δ⊤i δi +

∑
k=1···N δki

⊤δki , i = 1, 2. The
critic network weights are updated through gradient descent:

˙̂Wci = −kci,1
σiδi
ρi(t)

− kci,2
N

N∑
k=1

σk
i δ

k
i

ρki (t)
, i = 1, 2 (24)

where kci,j > 0 are learning rates, ρi(t) =
(
σ⊤
i σi + 1

)2
,

ρki (t) =
(
σk
i
⊤σk

i + 1
)2

, σi = ∇ϕ⊤
ci(F + αGÛ + βKω̂), and

σk
i = ∇ϕ⊤

ci(X
k)(F + αGÛk + βKω̂k). The actor network

weights follow a similar gradient-based update:

˙̂Wai = Fikai

(
Ŵci − Ŵai

)
, i = 1, 2 (25)
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where kai > 0 are actor learning rates and Fi are positive
definite matrices. To ensure convergence, we require the
following excitation condition:

Assumption 3. (Persistent excitation) [42, 43] The collected
data satisfies:

Λ1,iIm,i ⩽
∫ t+T

t

σiσ
⊤
i

ρi
dτ, Λ2,iIm,i ⩽ inf

t∈Rt≥t0

σk
i σ

k⊤
i

Nρki

where Im,i is identity matrix and either Λ1,i or Λ2,i must be
positive.

The complete online learning procedure is detailed in
Algorithm 1.

Algorithm 1 Online Learning Algorithm for Hybrid Attack-
Defense

1: Initialize actor-critic networks:
• Actor weights Ŵai and critic weights Ŵci

• Learning rates kci,j , kai
• Projection matrices Fi, i, j ∈ {1, 2}

2: while t < Tend do
3: Compute optimal strategies:

• Defense policy Û via (20)
• Attack policy ω̂ via (21)

4: Evaluate Bellman errors from (23):
• Defender error δ1(X, Û , ω̂)
• Attacker error δ2(X, Û , ω̂)

5: Update experience replay buffers:
• Defender: [Û , δ1, [Û

j , δj1]
N
j=1]

• Attacker: [ω̂, δ2, [ω̂j , δj2]
N
j=1]

6: Update network parameters:
• Critic weights via (24)
• Actor weights via (25)

7: Execute actions and update system state
8: end while

V. STABILITY ANALYSIS

In this section, we analyze the stability properties of the
closed-loop system using Lyapunov theory. The main objective
is to establish uniform ultimate boundedness (UUB) of both
system states and neural network estimation errors under
hybrid attacks. Based on the optimal defense policy in (20) and
attack strategy in (21), we have the following error bounds:

∥U∗(X)− Û(X)∥2 ≤ Σ̄u1
∥W̃a1∥2 +Πu1

(26)

∥ω∗(X)− ω̂(X)∥2 ≤ Σ̄u2∥W̃a2∥2 +Πu2 (27)

where Σ̄ui are positive constants determined by network
activation bounds, and Πui

represent bounded approximation
residuals.

The key stability results are summarized in the following
theorems:

Theorem 1. Consider system (4) with the proposed
Stackelberg game framework. Under Assumptions 1-3, for

0X 1X

0Y

1Y

0V

1V

1

2

Y

X

lV

rV

Fig. 3. Schematic of the four-wheeled mobile robot.

networks updated via (24)-(25), the augmented error state
Z = [X⊤, W̃⊤

c1, W̃
⊤
c2, W̃

⊤
a1, W̃

⊤
a2]

⊤ remains UUB if:

∥Z∥ ≥
√
Ψres/(λHI) (28)

where Ψres is defined in (36), and λH denotes the minimum
eigenvalue of H in (37).

Theorem 2. For system (4), the approximate policies Û (20)
and ω̂ (21) converge to their optimal counterparts U∗ and ω∗,
reaching a unique Stackelberg equilibrium.

VI. NUMERICAL SIMULATIONS

A. Simulation setup
To validate the proposed Stackelberg game framework, we

conduct numerical experiments on a four-wheeled differential
drive robot system. The robot’s kinematic model follows:

f = 03×1, g =

 cos(θ) 0
sin(θ) 0

0 1

 (29)

where states x = [x, y, θ]⊤ represent position coordinates and
heading angle, and control inputs u = [v,Ω]⊤ denote linear
and angular velocities.

The reference trajectory is an elliptical path (x2
d/4+y2d = 1)

centered at origin with semi-major axis a = 2 and semi-minor
axis b = 1. The desired heading angle is θd = arctan{(yd −
y)/(xd−x)}. The tracking error is defined as e = [x−xd, y−
yd, θ − θd]

⊤.
For neural network implementation, we use basis functions:

ϕi =
[
e21, e

2
2, e

2
1 + e22, e

2
3, e

2
1 + e23, e

2
2 + e23

]⊤
. All network

weights are initialized to 5. Key parameters are listed in Table
I. The approximate optimal control (AOC) method from [40]
serves as baseline for comparison.

To handle input constraints v,Ω ∈ [−5, 5], we reconstruct
the defense penalty function as:

Ψ(U) = 2R

∫ U

0

µD tanh−1

(
ζU
µD

)
dζU (30)

The constrained defense input becomes:

Û = −µD tanh

{
R−1G⊤∇ϕ⊤

a1Ŵa1 − Ŵ⊤
a2∇ϕa2∇xGη

2µD

}
where µD = 5 denotes the input saturation bound.
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Fig. 4. Simulation results of the proposed Stackelberg game-based hybrid attack-defense framework.
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TABLE I
PARAMETERS OF THE NUMERICAL SIMULATION

Index Control parameters Update law

Defender
R = diag([1, 0.1]) k1,c1 = k1,c2 = 0.01

Q1 = I3, α = 0.1 k1,a = 1, F1 = I6

Attacker
γ = 2 k2,c1 = k2,c2 = 0.01

Q2 = I3, β = 0.1 k2,a = 1, F2 = I6

B. Simulation results

The numerical results demonstrate the framework’s
effectiveness through various performance metrics: Fig.
4(a) shows the evolution of neural network parameters.
The rapid convergence of both critic and actor weights
within 10s validates the learning efficiency of the proposed
algorithm. Fig. 4(b) illustrates the system state trajectories.
Despite persistent attacks, the states closely track their
reference values, indicating strong robustness of the controller
design. Fig. 4(c) presents the tracking error dynamics. The
errors remain bounded within ±0.2 and exhibit convergent

behavior, providing empirical support for the theoretical
stability analysis in Theorem 1. Fig. 4(d) depicts the control
signals from both agents. The defender generates smooth
control inputs while effectively counteracting the attacker’s
disturbances, demonstrating the framework’s ability to balance
performance and energy efficiency. Fig. 4(e) evaluates
the learning performance through Bellman errors. Their
asymptotic convergence towards zero confirms successful
approximation of optimal policies and attainment of game
equilibrium. Fig. 4(f) visualizes the stochastic hybrid attack
sequence. The binary switching pattern with probability
α captures the random nature of cyber attacks in
practical systems. Fig. 5 demonstrates the robot’s path
following capability. The minimal deviation from desired
trajectories under attack validates the framework’s resilience
in maintaining control objectives. These comprehensive results
verify two key theoretical claims: 1) uniform ultimate
boundedness of closed-loop stability, and 2) convergence to
Stackelberg equilibrium between competing agents.

C. Application to Critical Infrastructure Systems

Our framework demonstrates significant potential for real-
world critical infrastructure protection:
Our framework can be applied in several critical domains:
Power Grid Applications: 1) Wide-area monitoring against
coordinated cyber-attacks; 2) Real-time detection of false data
injection attacks; 3) Adaptive defense against DoS attacks;
4) Optimal protection of critical grid nodes. Autonomous
Vehicle Systems: 1) Secure V2V communication protocols;
2) Robust trajectory tracking under GPS spoofing; 3) Dynamic
defense for platooning safety; 4) Multi-layer protection
for vehicle networks. Industrial Control Systems: 1)
Protection of SCADA networks; 2) Resilient control of
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robotic systems; 3) Adaptive security for smart factories; 4)
Real-time attack detection in process control. Our ongoing
research focuses on hardware-in-the-loop validation and
pilot implementations across these domains. Initial results
demonstrate the framework’s effectiveness in maintaining
system stability and performance under various attack
scenarios.

VII. CONCLUSIONS

This paper develops a Stackelberg game-based framework
to analyze hybrid attack-defense dynamics in CPS. A novel
leader-follower structure models the sequential decision-
making process between attackers and defenders. The
attacker’s and defender’s objectives are formulated using H2

and H∞ indices. An efficient reinforcement learning approach
is proposed to learn optimal strategies online. Theoretical
analysis establishes uniform ultimate boundedness of the
closed-loop system. Numerical experiments on a four-wheeled
robot demonstrate the framework’s capability to maintain
control performance under attacks. Future work will explore
extensions to cooperative multi-agent systems and practical
implementations.
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APPENDIX: PROOF OF THEOREM 1-2

The proof of Theorem 1 follows from Lyapunov stability
analysis.

Proof. Consider the Lyapunov candidate:

V =J∗
1 + J∗

2 +

2∑
i=1

1

2
(W̃⊤

ci W̃ci + W̃⊤
aiW̃ai) (31)

Define the Bellman errors δi and δki :

δi =− σ⊤
i W̃ci +Φi(W̃a1, W̃a2) + ∆i (32)

δki =− (σk
i )

⊤W̃ci +Φk
i (W̃a1, W̃a2) + ∆k

i (33)

where Φi and Φk
i contain quadratic terms, and ∆i, ∆k

i are
bounded residuals.

Taking the derivative of V along system trajectories:

V̇ =

2∑
i=1

(
∇J∗

i Ẋ + W̃⊤
ci

˙̂Wci + W̃⊤
ai

˙̂Wai

)
(34)

Substituting the weight update laws and applying Young’s
inequality:

V̇ ≤ − ZTHZ +Ψres (35)

where the Hamiltonian matrix H is positive definite and:

Ψres =

2∑
i=1

(1
2
kci,1∥∆Wi∥2 +

1

2
kci,2∥∆k

Wi∥2
)

+ γ2Πu2
+ λ̄R,1Πu1

(36)

H =


µ1 0 0 0 0
0 µ2 0 0 0
0 µ3 µ4 0 0
0 µ5 0 µ6 0
0 0 µ7 0 µ8

 (37)

where matrix coefficients µi are defined as:

µ1 = λQ1 − λQ2

µ2 = 1
2 (kc1,1σ1σ

T
1 + kc1,2Λ2,1Im,1)

µ3 = (kc1,1 + kc2,1)σ1σ
T
2

µ4 = 1
2 (kc2,1σ2σ

T
2 + kc2,2Λ2,2Im,2)

µ5 = −F1Im,1

µ6 = F1Im,1 − λ̄R,1Σu1
Im,1

µ7 = −F2Im,2

µ8 = F2Im,2 + γ2Σu2
Im,2

(38)

where ∆W1 = 0.25W̃T
a1GσW̃a1 + ∆1 + ξH1, ∆W2 =

0.25W̃T
a2KσW̃a2 − 0.25W̃T

a1GσW̃a1 + ∆2, ∆k
W1 =

0.25W̃T
a1Gσ,kW̃a1 + ∆k

1 , ∆k
W2 = 0.25W̃T

a2Kσ,kW̃a2 −
0.25W̃T

a1Gσ,kW̃a1+∆k
2 . Therefore, the augmented error state

Z converges to the compact set defined by (28), establishing
UUB.

The detailed proof of Theorem 2 is referred to the Theorem
2 in [17, 18]
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